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The problem of constructing reachable domains (RDs) of a non-linear control system functioning over a finite time interval is 
considered. A method is proposed for the approximate construction of RDs, based on partitioning the phase space of the system 
by an e-lattice. Estimates are obtained for the accuracy of the approximate RDs. An example is presented. © 1998 Elsevier Science 
Ltd. All rights reserved. 

The numerous publications devoted to this problem present a variety of approaches to its solution. A 
large group of publications [1-5] is devoted to estimating reachable domains (RDs) of control systems 
and differential inclusions (Dis) by ellipsoids or sets of ellipsoids in the space R ~. Estimates of RDs 
have been obtained [6, 7]. The problem of the approximate computation of RDs as polyhedra in the 
phase space R m has been investigated [8]. Mention should also be made of papers [9, 10] on numerical 
methods for constructing RDs of linear control system. 

The approach adopted here is close to that of [11, 12], which was based on introducing a rectangular 
lattice in the positiion space and approximating RDs by sets of lattice nodes. A similar method was 
used in [13-15]. q~he investigations in [16], which consider the approximate computation of RDs in 
the case of autonomous Dis, are more recent. Other properties of RDs have also been investigated 

[17-24]. 

1. Suppose we are given a control system whose behaviour is described by the equation 

Jc=f(t,  x, u), u c P ,  t e l ,  l=[to, 01, t0<O<** (1.1) 

where x is the m-dimensional vector of the system, u is the control and P is a compact subset of Euclidean 
space R ~. 

It is assumed that the following conditions are satisfied 
1. The vector functionf(t, x, u) is continuous in the set of variables t, x, u in the domain I × R m x P, 

and for any bounded and closed domain D C I x R m a constant L = L(D) e (0, oo) exists such that 

II f(,;, x*, u) - f ( t , x . ,  u) I1< LIIx* - x .  II for (t,x*) and (t,x*) inD, u,~ P. 

2. A constant u e [0, oo) exists such that 

 f(t, x, u)tl +1 11), (t, x, u) D × e 

By an admissible control u(t), t ~ I, we mean any Lebesgue-measurable function such that u(t), ~ P, 
t ~ l .  

A solution of Eq. (1.1) generated by an admissible control u(t) is defined as an absolutely continuous 
vector function £[ t ], t ~ 1, such that :t[t] = f(t, x[ t ], u(t)) almost everywhere (a.e.) on L 

The symbol Y(t*; t . , x , ) ,  to <- t .  < t* <- a~ will denote the set of allx* ~ R m reached at time t* by 
solutions x[ t ], x[t,] = x .  of Eq. (1.1) generated by all possible admissible controls u(t); Y(t*; t., x.)  is 
called the RD at time t* of system (1.1) with initial data x[t.] = x,. We also assume 

Y(t*; t.,Y,)= UY(t*; t,, x,) 
x.. el~ 

(Y, is a set from Rm). 
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We will associate a DI 

yc ~ F(t, x), te I, F(t, x) = co{f (t, x, u) : u ~ P} (1.2) 

where co{ • } denotes the dosed  convex hull of the set in question, with Eq. (1.1). 
A solution of  the DI  (1.2) is defined as an absolutely continuous vector function x[t], t ~ I satisfying 

(1.2) a.e. on L 
Le tX~ = X(t*; t , , X . ) ,  to ~ t .  < t* ~ 0 denote the set of allx* ~ / ~  reached at time t* by all possible 

solutions x[ t ], x[ t .  ] = x .  ~ X .  of the DI (1.2). We have 

X*=ciY(t*;  t., X,),  t o < t , < t *  <O , X. c R  ra 

where clX denotes the closure of X. 
Thus, let us consider the problem of computing the se tXJ  = X(t*; to, Xo), t* ~ LX o  c R ~, frequently 

encountered in theory and applications. In the general case this set cannot be calculated exactly, and 
we will therefore have to do so approximately. 

The right-hand side F(t, x) of the DI (1.2) generally depends on t and satisfies a Lipschitz condition 

d(F(t, x), F(t, y))  <- L II x - y  II for (t, x), (t, y) in D, L = L(D)  ~ [0, oo), 

where D c I x R m is any bounded closed domain. 
Note that if the set.7(0 is bounded, it follows from Condition 2 that the sets X~0, t* e I are uniformly 

bounded. It is not difficult to show, using Gronwall's inequality (see, for example, [25]) that a cylinder 
D = I x G in the space of positions (t, x) exists such that X8 + e*B C G, t* ~ I (where G is a closed 
sphere in R m, B = {x ~ R m : II x II ~< 1}, e* > 0), where we have used the notation X + Y = {x + y : 
x ~ X , y  ~ Y} aX= { a x : x  ~ X } .  

On the basis of this remark, we shall assume that all our constructions are carried out in the cylinder 
D and therefore, for all (t, x) occurring in these constructions, the right-hand sides F(t, x) of the DI 
(1.2) are uniformly bounded (that is, I[ f ll ~< K for all f E F(t, x), (t, x) ~ D, where K is some finite positive 
number). 

The approach proposed here is based on introducing a certain finite partition F of the interval L 
substituting for the phase space R m a certain fixed e-lattice N~ and approximating the RDs X~, 
t* e I by certain finite subsets of N~. The computation of the RDs XJ, t* ~ I of the DI (1.2) reduces to 
a certain procedure of calculating discrete approximations of these domains--finite subsets of the lattice 
N~. 

2. We now introduce a set ~'1 = ~'(q; t0, X0) that will serve as an approximation of  the RDX1 = X(tl; 
to, Xo) and which corresponds to the Dig( t )  ~ F(to, Xo); we will then determine the degree to which the 
set X1 is approximated by X1. 

Let F be a partition of the interval I by times to, q . . . .  , tN-1, tN = O, where A/= ti+l - ti = const > 0. 
We also assume 

Xi+l =X(ti+l; t~,X~), i=0,1  . . . . .  N -  1 (2.1) 

whence it follows that XN ----- X(O; to, X0). 
Thus, the R D  XN of the DI (1.2) could have been calculated using only the recurrence relations (2.1), 

had we known how to calculate all the "intermediate" RDs X/+I of (2.1) exactly. However, we do not 
know how to do so. We will use the recurrence relations (2.1) in approximate calculations of the set 
XN. 

The first step of our approximate calculations corresponds to the interval 11 = [to, q] of the 
partition F. 

Let x[t0] = x0 be an arbitrary point in the bounded subset X0.of R m. Let us consider the set 
~1  = ~'itl; to, x[ to ]) = x[ to] + AoF0, where F0 = F(to, x[ to ]). The set ~ is a RD of the DI 

2(t) e F 0, x[t0] = x 0 (2.2) 

and .~'~1 js a certain approximation to the RD X~I = X(tl; to, x[ to ]) of (1.2), which is easier to compute 
t h a n X  °. 

We shall show that the Hausdorff distance d(X~l, ~ )  is at least an order of magnitude smaller than 
the increment A0 = tl - to > 0. The following inequality holds 
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d( X°, X ° ) ~ O ( A o ) ,  ¢ ~ ( A ) = A o ' ( ( I + K ) A ) ,  A > 0  (2.3) 

where  co*(6) is some positive funct ion o f  ~ > 0 which tends to zero as 6 ~ 0; the quanti ty K w a s  def ined 
in Sect ion 1; co*(8) and K are independen t  of  the choice of  to, fi, X[to]. 

The proof of the inequality is as follows. 
Let x (1) • X1 °. Then a solution x[t0], t 

x[t0] = x 0). This solution admits of the representation 

x[t] = x[t0] + I~ o f[x]dx, f [x] e F(x,x[x]) a.e. on Ix (2.4) 

By Condition 1, a function co*(5) (¢o*(8) ~, 0 as 5 $ 0) exists such that 

d(F(t,, x.), F(t*, x*))<oo*(It.-t* l+l lx , -x* II), d(F(t, x,), F(t, x*))< LI Ix , -x*  U (2.5) 

• 11, of the DI (1.2) with initial value x[t0] exists such that 

(t, ,x ,) ,  (t*,x*) inD, t • Ii 

It follows from (2.4) and (2.5) that 

d(F(t, x[t]), Fo) _< o*(Ao+ II x[t]- x[t0] II ) < to*((1 + K)Ao) (2.6) 

It follows from (2..4) and (2.5) that f i t ]  • Fo + co*((1 + K)Ao)B for a.e. t • 11. Consequently, we have 

l tl 
I f [ ' q~  • Fo + to* (0 + g)ao)a 

A0 to 
(2.7) 

It follows from this inclusion that 

Hence we obtain 

tl 

x[fil = X[t o ] + I f[x]d't e x[t0l+Ao(F 0 + to*((l + K)A0)B ) = XI ° + O(A0)B 
to 

o)(5) = i~m* ((I + K~5), $ • (0, .0) 

x ° c ~o +~Ao)B  (2.8) 

We will now prove that 

XI 0 c X 0 +¢~(A0)B (2.9) 

Le tx  0) • ~,o. It is true thatx (1) = X[to] + Af0),f (1) • F0. Together with the motionx0)tt] = X[to] + ( t -  to)f (1), 
t • I1 of the DI ~ t ]  • F0 with initial value X[to], let us consider the Euler polygon ~(k)[t], t • I1, defined by the 
relations ~(k)[t(~)l] = i(k)[t(~)] + Aj(k))~ (k), where t: (k), t(jk) 1 are points of the partition Fk = (t~ k) = to, t t k ) , . . . ,  
t~lk)-,, t~k) = tl; A200 = t(~)X - tj (k) = const, and~ (k) e F(tj (k), i(k)[tj(k)]) = F k is the vector in the set F1 (k) nearest to 
the vector fO); 2(k)[to(k)] = X[t0]. 

The Euler polygon 2(k)[t], t • 11 satisfies the inequality II xfk)[t] -X[t0] I1< KAo, and so d(F(t, Yc(k)[t]), Fo) < o~* 
((1 + g)~0), t • Iv  

Since f 0) • F0, it follows tha t f  O) e F(t, £(k)[t])+co*((1 + K)A0)B, t • Ix. In particular, the following inclusion 
holds f o r f  (1) at the nodal points of the partition Fk 

f(I) e F: k) +co*((l + K)&0)B (2.10) 

Thus, taking (2.10) into consideration, we obtain an upper limit 

O) (k) .~(~) C~) < O) (k) -(k) (k) (~) * 
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Taking these N(k) inequalities into consideration, we obtain X(1)rt(k)t N(k)j--1 .~r,( k)t,N(k)Jl jl < A(ok)~* ((1 + K)Ao) + A(~k)co * 
((1 +/O~o)+...+A(~(,)_~co* ((1 +/0~o). 

This inequality may be rewritten in the form 

~ x(I)[tl ] -  .~(k)[t I ] ] ~ O)(A O) (2.11) 

Inequality (2.11)holds for all polygonal lines ~(k)[t], t e I1 constructed in this way. 
Extracting from the sequence .f(k)[t], t ~ Ii(k = 1, 2 . . . .  ) a uniformly convergent subsequence .~(')[t], t e I1 

(n = 1, 2 , . . . ) ,  we conclude that the vector function x[t] = limn._~.f(')[t], t ~ I1 satisfies the relations 2It] e F(t, 
x[t]), t e I1. We have thus established the inclusionx (0 = x(l)[tl ]~ X ° + co(&)), proving (2.9). The required relation 
(2.3) now follows from (2.8) and (2.9). 

The RDs X1 and X~ may be expressed as 

XI = U x( f i ,  t o , X[to] ), )(l = U )c(tl, to, x[to]) (2.12) 
x[ to ]e Xo x[to leXo 

It follows from (2.3) and (2.12) that 

d(Xt,  XI) ~ tO(A0) (2.13) 

_ The RD,~'I is somewhat simpler to compute than X1, since it is expressible as a union of convex sets 
X(tl ,  to, Xo), Xo ~ )Co. 

3. We will now describe an approximation scheme for computing RDs of system (1.1). 
0 Divide the space R 'n into m-dimensional cubes Oi with centres xj = xj[to] and vertices distant 

from the centres by an amount e > 0. We will call the infinite set of centres x ° a lattice in R m and 
denote it by N~. 

Now pick out all cubes Oj such that Oj f3 )Co ~ O, say Oj (j = 1, 2, . . . .  J0). Consider the centres x ° 
(j = 1, 2 , . . . ,  Jo) of these cubes. Since Xo is a bounded set, J0 is a finite number. 

Put X8 = {x ° : j = 1, 2 . . . .  , J0}. By the construction of the set ~0, we have d(Xo, X~o) < e. 
Let 5 > 0 be given; starting from the set F0, we define, by some rule, a finite 5-net ~o =/~(t0, X[to]) = 

(fk ~ ~ Fo : k = 1, 2 . . . . .  K0} such that d(Fo, Fo s) < & 
We thus have discrete finite approximations X~ and F~0 of the sets X0 and F0. 
Now consider the set A'1. Let X[tl] be an arbitrary point of X1. We can represent this point in the form 

X[tl] = x[t0] + Aof, x[t0] ~ Xo, f ~ )70. 
We now find an approximation to the point x[fi] in the discrete scheme. In that connection, given 

x[t0], we find a point x)' ~ X~ distant from x[t0] by at most e 

Now, for a vec tor f  ~ F0, a vector f~  ~ F(to, x °) exists which satisfies the inequality 

(3.1) 

since x ,--* F(t, x) is a Lipschitz-continuous multivalued function with constant L = L(D).  Taking the 
, 0 k 0 vectorf~ ~ F(to, Xj), we can find a vector~ e FS(to, Xj)  such that II/~ -~11 < 5. 

k" 8 0 Thus for any vector f ~ F0 a vector f :  ~ F (to, ~ ) exists such that difference between the points 
X[tl I = X[t0] + Aofandx* t t l ]  = x 0 + AQf~is 

~(X[to] + Aof)  - ( x j  °" + Aoff)~ ~ e + ( /~  + 8)A 0 (3.2) 

Denote V..m = exp(2LA,,). Setting 5 = L6, we see that inequality (3.2) becomes 

[X[tl ] -  x*[t I] ] < E(1 + 2LAo) < tO E (3.3) 
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k : ( to ,  THUS, we finally deduce that for any point £[tl] ~ R'I a point x*[h] = x ° + ~ f ~ , x  ° • Xo, f~ 
x °) exists which satisfies inequality (3.3). 

Denote the set of all such points for j  = 1, 2 . . . . .  Jo, k = 1, 2 , . . . ,  KJ0 by X$ = X*(t l ,  to, X~o). 
We thus conclude that the Hausdorff distance between the sets X~ and X~ satisfies the inequality 

h(X~, X$) < ~e .  Since d(Xo, ~o) < ~ and F~(t0, x °) C F(to, x°), it follows that the Hausdorff distance 
between X$ and X~ satisfies an analogous inequality. These inequalities imply that 

d(X i, X~) -< ~o e (3.4) 

It follows from estimates (2.13) and (3.4) that the Hausdorff distance between the sets X1 and X~ 
satisfies the inequality 

i1, 

d( X~, X~ )<~o¢+O(A 0) (3.5) 

For each point xl[ti] ~ X~,  we find a point x ) = xl[h] of the lattice N~ distant from x[t~] by at most 
: I1 x} - x[td II < r:. Combining all such points x) of N~ corresponding to all points x[h] of X~ into a 

single set X~, we infer from (3.5) that 

The discrete finite set X~ thus constructed is an e rne t  for the set X l - - a  reachable domain of the DI 
(1.2), where ~1 = ~0~ + o ( ~ )  + 6. 

We will now construct approximations in the next interval Iz[h, t2] of  the partition F. The arguments 
are entirely analogous to those above, with very slight differences. 

Consider the RD X1, Let xl = x[td ~ X1. Let us consider the set ~'~ = ~'(t2, tl, x[t l])  = 
x[tl ] + A1F1, A1 = t2 - tl, which is a RD of the DI~(t)  E F 1, x[t 1 ] = Xl for a time t2, where F1 = F(tl, 
x[ tl ]). X~ approximates the RD X~ = X(t2; h,x[  tl]), and, by analogy with (2.3), the Hausdorff distance 
between these two sets satisfies the inequality d(X~, ~'g) < o(A 3. Consequently, the Hausdorff distance 
between the sets X2 and ~'2 = ~'(t2; tl, Xl )  = t~IX[II]EXI Xl(t2;  tl, X[tl ]) satisfies the inequality 

d( X 2, X2)';t0(At) (3.6) 

Consider the set: X2. Let :ritE] ~ -~2 be an arbitrary point. Then it may be expressed as ~[t2] = x[tl] + 
Alfl, where x[tl] ~ F1. 

1 1 For the point x[h] ~ X1, find a point xj of the c rne t  X1 of X1 such that II xj  - x [ t  1 ] II < ~1. Given a 
number 6 > 0 and using some rule, we define on the set F1 a finite 6-net 

Fll 6 = F ~ (t 1, x[t I ]) = (f~ • F t : k = 1, 2 ..... K 1 } 

such that d(F1, FI ~) < 5. 
1 Assuming that the &net b"S(tl, xi) is given, by analogy with (3.1) and (3.2) we can find, for any vector 

f e F1, a v e c t o r ~  E Fs(h, xj) such that the &stance between the points x [t2] = x[tl] + All and x [t2] = 
x~ + ~xd~:is 

Hu ,, + ", J>- (.,'. + ' , ,#  >n <- H*, 3 - " ;b  ' q ; - # 1  ', + ", +8> 

Letting 5 > 0 be any number such that 5 < Lel (for example, 6 = Lel), we obtain the estimate 

II t'2 a- ;t'dl-  + (3.7) 

Thus, we finaUy deduce that for any point £[t2] e ~'2 there is a point 

x*[t2]= xj + ' h f j  , • 

satisfying inequality (3.7). 
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Denote the set of all pointsx*[t2] =x~. + Al~jjgXJ. EX] , fkEF6( t l ,  Xl.);j= 1 , 2  . . . .  ,Jl, k = 1,2 . . . . .  
r~ by X*e = X* (t2, xl, X]). 

Inequality (3.7) implies that the Hausdorff distance between the sets,~2 and X~ satisfies the inequality 
h(X2, ~ < ~e~. On the other hand, noting that d(X1, X]) < e, and F~(fi, x~) C F(fi, x~), we obtain 
h(X , X2) < 

Consequently 

d( 2, s (3.8) 

Taking estimates (3.6) and (3.8) into account, we obtain 

d(X2, )(2) <- ~#! +¢°(AI) (3.9) 

For every point x[t2] ~ X~, we find a point ~ ~ N, distant by not more than ~ from X[t2]. Denote 
the set of all points ~ for points x[t2] ~ * X 2 b y  X~.  B y  construction of X~, we have an estimate d(X~ X~) 
< e. Taking note of (3.9) and the last inequality, we obtain d(X2, X ~  < 62, e2 = ~1~1 + t0(Al) + c. 

Thus, X~ is a discrete approximation to the RD X2. 
Similar constructions yield approximating sets X~, X~, • • . ,  Xi+l, .  • . ,  A~N for the intervals [t2, t3], 

[t3, t4] . . . . .  [ti, ti+l] . . . . .  [tml, tN]. In the interval It/, §+1] we have the estimate 

d(Xi+l, XJ~-I) < ei+l, el+l = ~iei +¢0(A,)+~ (3.1o) 

for the Hausdorff distance between the RD of the DI (1.2) and the computed discrete approximation. 
In particular, in the last interval [tN_l, tN] we have d(XN, X~) < oN. 

Using the recurrent formula (3.10) for the sequence {~i}, as well as the expressions co(A) -- 
Ao~*((1 + K)A), where co* ((1 + K)A ~, 0 as A ,[, 0, and the equalities Ao + AI • • • + AN-I  ---- O -- to, 
Ai = A), we obtain an upper bound for ~Jv 

eU < exp[2L(O - t o)](O - t o){ (I + 1 ~ ) ~ -  + (o* ((1 + K)A) } (3.11) 

(the number e, the parameter of the lattice N~ is related to the length A = (O - to)IN of the intervals in 
F by a formula e = D.AqA, where D is some finite positive number). 

It follows from estimate (3.11) that its right-hand side tends to zero as A - ,  0. At the same time, 
d(XN, X~) - ,  0 as A - ,  0. The rate of convergence is determined by the expression in braces on the 
rights of (3.11). As A --, 0 the number N tends to infinity, so that for large N 

(1 +  ) a4X + m*(0 + K)a) = + co*(0 + K)A) (3.12) 

When system (1.1) is autonomous (i.e. the right-hand side of the system has the form f(x, u)), we may 
assume, in addition to conditions 1 and 2, that the expression on the right of the first inequality in (2.5) 
is equal to LI[ x* - x .  [[. In that case (3.12) becomes 

( 1 +  + - + 

Example. Suppose that the dynamics of a control system are described by the equations 

1 1 

For 

to=O, Xo={(xl, x2)eR2:(xl-5)2 +(x2-5)2 <25}, a=0.1, ~=0.025 

the RDs of the system corresponding to times to = O, t3 = 0.3, t14 -- 1.4 are shown in Fig. 1. 
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